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Abstract
Although multiple channels are supported in the physical layer, the IEEE 802.11 MAC layer mechanism is

designed for using a single channel. Exploiting multiple channels enhances spatial reuse and reduces transmission
collisions and thus improves network throughput. Designing a multi-channel MAC protocol is much more difficult
than designing a single-channel one. New challenges, such as the channel allocation problem and the missing re-
ceiver problem, must be overcome. Existing multi-channel MAC protocols suffer from either higher hardware cost
(because of applying multiple transceivers) or lower channel utilization (due to limited transmission opportunity).
In this paper, a fully distributed channel hopping solution, the Cyclic-Quorum-based Multi-channel (CQM) MAC
protocol, is proposed. We use the cyclic quorum in a novel way and the proposed protocol has several attractive
features. First, only a single transceiver is needed for each node. Second, any sender is guaranteed to meet its
receiver in a short time. Third, each node’s channel hopping sequence is derived from its node ID. This avoids
exchanging control messages, such as each node’s hopping sequence or available channel list. Fourth, multiple
transmission pairs can accomplish handshaking simultaneously. The proposed protocol is simple and efficient.
Simulation and real system implementation results verify that our mechanism is a promising multi-channel MAC
protocol for mobile ad hoc networks.

Index Terms
Mobile Ad Hoc Networks, IEEE 802.11, Multi-Channel MAC Protocols, Quorum Systems.

I. INTRODUCTION

The IEEE 802.11 standard [4] has been widely accepted as a single channel MAC mechanism for mobile ad hoc

networks. In the IEEE 802.11 standard, the fundamental mechanism to access the shared medium is the distributed

coordination function (DCF) which utilizes the RTS/CTS/DATA/ACK four-way handshake mechanism to solve

the hidden terminal problem. If only one channel is supported, this mechanism suffers from many collisions in a

heavy-loaded network. Using physical carrier sensing improves the performance of the virtual carrier sensing, if

a proper carrier sense range can be found [14], [36], [38], but the collision problem remains. Utilizing multiple

channels may help to share the traffic loads among different channels and hence alleviate this problem. Allowing

users to use multiple channels can also increase spatial reuse, which increase the aggregate throughput of the

network. In fact, IEEE 802.1b and IEEE 802.11a support 3 and 13 non-overlapping channels, respectively. It

means that designing a multi-channel MAC protocol is feasible and desirable in IEEE 802.11-based mobile ad

hoc networks.

There are many design challenges in multi-channel MAC protocols. An important issue is how and which

channel should be selected for data transmission. Solutions to this problem can be classified according to the
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TABLE I
CLASSIFICATION OF MULTI-CHANNEL MAC SOLUTIONS.

Single-Rendezvous Multi-Rendezvous

Multi-Transceiver [6], [13], [25], [32], [33], [34], [35] [5], [18], [19], [24]
Single-Transceiver [12], [15], [17], [20], [22], [23], [27], [30], [37] [7], [29], [31], ours

following two factors:

• single-/multi-transceiver: Whether a user can utilize multiple transceivers or not.

• single-/multi-rendezvous: Whether multiple transmission pairs can always accomplish handshaking simulta-

neously or not.

Based on such classification, we categorize existing typical solutions and the solution proposed in this paper

in Table I.

There are many protocols [5], [6], [13], [18], [19], [24], [25], [32], [33], [34], [35] use multiple transceivers to

handle the channel allocation job. Nodes running these protocols are equipped with at least two transceivers. In

some protocols [6], [13], [25], [32], [33], [34], [35], one transceiver is tuned to a common control channel which

is dedicated for negotiating the channel to be used next. Once the channel is selected, the other transceiver(s) will

switch to the negotiated channel for data transmission. These protocols are referred to as the single-rendezvous

solutions. An undesirable feature of the multi-transceiver, single-rendezvous category is that the dedicated control

transceiver is a bottleneck. Without using a dedicated control channel, in [18], [19], [24], each node fixes one of

its transceivers to its own fixed channel, waiting for accepting transmission requests, and the other transceivers are

free to switch to any channel to initiate a transmission. Another scheme [5] uses two transceivers; one performs

a fast channel hopping and the other performs a slow channel hopping. The fast-hopping transceiver is used for

transmission while the slow-hopping one is used for reception. We call these solutions multi-rendezvous ones

since handshakings for different transmission pairs can be handled at the receivers’ fixed channels simultaneously.

The downside of using multiple transceivers is increased hardware cost.

To reduce such cost, a number of studies utilize only one transceiver [7], [12], [15], [17], [20], [22], [23], [27],

[29], [30], [31], [37] to solve the channel allocation problem. Some of them [20], [22], [23], [27], [37] use a

dedicated control channel for control messages exchanging. In such a method, the dedicated control channel will

be either over-loaded or under-utilized if the capacity of the dedicated control channel and the data channels is

not distributed properly. Some other proposals [12], [15], [17], [30] use a common control period, similar to the
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ATIM window concept in IEEE 802.11 power saving mode (PSM), for nodes to negotiate the data channels. This

scheme suffers from the same problem as those use a dedicated control channel. Using either a dedicated control

channel or a common control period, these protocols belong to the single-rendezvous class since no concurrent

handshaking is allowed. Some other solutions utilize the channel hopping concept to switch among data channels

to achieve multi-rendezvous [7], [29], [31]. Different nodes have different channel hopping sequences and two

nodes are able to communicate with each other when they switch to the same channel at the same time. A multi-

channel protocol called multi-channel MAC protocol (McMAC) uses a common linear congruential generator to

build each node’s channel hopping sequence [29]. An asynchronous efficient multichannel MAC protocol (EM-

MAC) also adopts the pseudorandom channel hopping mechanism [31]. In the slotted seeded channel hopping

protocol (SSCH), a channel hopping mechanism is proposed such that any two nodes are guaranteed to have a

rendezvous once in a cycle [7]. Avoiding using a common control channel/period, multi-rendezvous solutions do

not suffer from the bottleneck problem. It is shown that the multi-rendezvous protocols outperform the single-

rendezvous ones [7], [29], [31]. A flaw of these channel hopping protocols is that they may suffer from the

missing receiver problem (to be described in the next section). This problem occurs frequently, especially in a

heavy-loaded environment [27]. A more detailed review of some representative multi-channel protocols can be

found in Section 2.

Since the single-transceiver and multi-rendezvous are attractive features, we focus on designing a multi-channel

MAC protocol in this class. In this paper, we propose a cyclic-quorum-based multi-channel MAC protocol (CQM)

which overcomes the limitations of existing solutions in this class. Our idea is to use one transceiver to emulate

the multi-transceiver, multi-rendezvous solutions. The cyclic quorum system, a kind of quorum systems, has the

intersection property. Based on an extension of this property and clever allocations of channels, the CQM protocol

can utilize any number of channels and guarantees that any sender can meet its intended receiver in a short time.

The rest of the paper is organized as follows. In Section II, we describe the problem to be solved and

provide some reviews. In Section III, our new multi-channel MAC protocol is described in detail. We analyze the

performance of SSCH and CQM in Section IV. Simulation and real system implementation results are provided

in Section V. Finally, in Section VI, we conclude the paper.
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II. DESIGN ISSUES AND LITERATURE REVIEW

A. Design Issues

Besides the channel allocation problem, there are two more challenges in designing a multi-channel MAC

protocol: the multi-channel hidden terminal problem and the missing receiver problem. The former exists since

the control packets sent on a particular channel are unable to notify neighbors currently tuned to different

channels. The latter occurs when the sender fails to access its intended receiver since they do not reside on the

same channel. Both problems do not bother the multi-transceiver, single-rendezvous solutions. However, for the

multi-transceiver, multi-rendezvous category, the missing receiver problem is solved but the multi-channel hidden

terminal problem may still remain. For the single-transceiver, single-rendezvous category, these two problems

occur if a dedicated control channel is used. For the single-transceiver, multi-rendezvous class, only the missing

receiver is a problem.

We focus on designing a multi-channel MAC protocol in the single-transceiver, multi-rendezvous class. Solu-

tions in this class take channel hopping as the basic mechanism. We consider there are three design issues for

a single-transceiver, multi-rendezvous multi-channel MAC protocol. First, we have to guarantee a sender and its

intended receiver are able to communicate, i.e., they are guaranteed to hop to the same channel simultaneously.

Second, this guarantee should be done with the least controlling overhead. The third design issue is that the

proposed solution has to avoid the missing receiver problem. To achieve these requirements, we investigate the

possibility of utilizing quorum systems to design a multi-channel MAC protocol. We extend our earlier work

[11] by providing a detailed analysis of the proposed CQM protocol, more simulation results, and real system

implementation results.

B. Related Work

In the multi-transceiver, single-rendezvous class, a representative one, the dynamic channel assignment (DCA)

protocol, which assigns channels in an on-demand manner was proposed in [35]. A node running DCA is equipped

with two transceivers, one for control and the other for data transmissions. Since the control transceiver is being

listened all the time, each node knows the complete channel usage information and thus can select a free channel

whenever needed. An enhancement of DCA which reduces the frequency of control packet transmission can be

found in [33]. Another enhancement of DCA which controls the transmission power level of data packets to

reduce the power consumption was proposed in [34]. The concept of ATIM window in IEEE 802.11 PSM is



5

Node B

1 2 0 11 0 2

(1+1) (mod 3)

Time slot 0 1 2 3 4 5 7

2 01 12 1 0

(1,1)(channel, seed) pair 1

(channel, seed) pair 2

(2,1) (0,1)

(1,2) (0,2) (2,2)

parity

1 2 0 11 0 2
(1,1) (2,1) (0,1)

(1,2) (0,2) (2,2)

parity

1
(1,1)parity

2 01 12 1 0
parity(1,1) (2,1) (0,1)

(2,2) (1,2) (0,2)

1
(channel, seed) pair 1 (1,1) (2,1) (0,1)

(2,2) (1,2) (0,2)(channel, seed) pair 2

6 8 9 10 1211 13 ...

(1+2) (mod 3)

Node A

cycle t

(1+1) (mod 3) (1+2) (mod 3)

cycle t+1

14

Fig. 1. An example of SSCH operation with 2 (channel, seed) pairs and 3 channels (numbered from 0 to 2).

borrowed by the power-saving multi-radio multichannel MAC protocol (PSM-MMAC) [32]. In PSM-MMAC,

each node has one default transceiver serving for traffic indication and channel negotiation. During the ATIM

window, each node switches its default transceiver to the default channel to exchange transmission intention

through ATIM/ATIM-ACK packets. Also, the source-destination pairs select channels according to the quality

and traffic load in each channel. After ATIM window, all channels, including the default channel can serve to

exchange data on all the transceivers. The protocols mentioned above have the same control transceiver bottleneck

problem and thus system capacity will not be utilized efficiently.

In the multi-transceiver, multi-rendezvous class, the protocols proposed in [18], [19] divide each node’s k

transceivers into fixed interface and switchable interfaces. Each node has one fixed interface and is switched to

a fixed channel, waiting for receiving data from the other nodes. The other k − 1 transceivers are switchable

interfaces. A data transmission from node A to node B is enabled by tuning one of node A’s switchable interfaces

to node B’s fixed channel. The primary channel assignment based MAC protocol (PCAM) [24] adopts similar

mechanism. In PCAM, three transceivers are equipped for each node. The primary transceiver stays tuned on

a fixed channel. Two nodes communicate with each other using the primary transceiver if their fixed channel

is the same. Otherwise, the sender’s secondary transceiver is switched to the receiver’s fixed channel. The

third transceiver is used for broadcasting control information. The division of fixed (primary) and switchable

(secondary) transceivers makes these protocol multi-rendezvous ones. However, equipping each node with multiple

transceivers is undesirable because of increased hardware cost.

To reduce hardware cost, several proposals utilize only one transceiver to solve the channel allocation problem.

Some of them belong to the single-transceiver, single-rendezvous class [20], [27], [30], [37]. In the asynchronous

multichannel coordination protocol (AMCP) [27], one control channel and n data channels are assumed. Each
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node locally maintains an n-entry channel table to keep track of the usage of data channels. Channel negotiation

between a transmission pair is achieved through the control channel. Then, both nodes switch to the scheduled

channel, say channel x, for data transmission. After data transmission, both nodes will switch back to the control

channel and set all data channel except x to be unavailable for a certain period of time. Such settings can avoid the

multi-channel hidden terminal problem. Similar to AMCP, the load-balanced MAC protocol (LBM) [37] utilizes

one control channel and n data channels. LBM aims to balance load sharing among channels during the channel

allocation. Nodes running LBM will use the channel that is available and has the lowest utilization ratio for data

transmission. In the Multi-Channel MAC protocol (MMAC) [30], all nodes initially listen on the default channel

during the ATIM window. At this window, channel negotiation between a transmission pair is achieved through

ATIM/ATIM-ACK/ATIM-RES packets. At the end of ATIM window, both nodes switch to the negotiated channel

to fulfill their data transmission. Although there is no dedicated control channel in MMAC, the ATIM window

can be considered as a common control period which still produces a bottleneck. An unsatisfactory feature of

these single-rendezvous solutions is that the control channel/period becomes a bottleneck which limits the overall

network utilization.

Solutions in the single-transceiver, multi-rendezvous class try to mitigate the bottleneck problem. In McMAC

[29], nodes generate their hopping sequences by a common linear congruential generator with their MAC addresses

as the seeds. The hopping sequences of each node’s intended receivers can easily be obtained if their MAC

addresses are known. When a node has data to send, it may changes its schedule with probability Pdeviate

to follow the intended receiver’s channel hopping sequence. Such a dynamically schedule switching increase

rendezvous probability sometimes; however, this scheme fails to solve the missing receiver problem since the

intended receiver may also change its hopping sequence.

In SSCH [7], each node hops between channels using its own channel hopping sequences. The channel hopping

sequences have been designed such that nodes will overlap with each other at least once in a cycle. Specifically,

each node’s hopping schedule can be determined by a set of (channel, seed) pairs. If there are n available channel

in the system, channel is an integer in the range of 0 to n−1 and seed is an integer in the range of 1 to n−1. For

each pair, the next channel is determined by a modular n adding of seed and the current channel. A parity slot

at the end of a cycle is also introduced to prevent the situation that two nodes never switch to the same channel

concurrently. In the parity slot, the channel assignment is set to the value of seed for the first pair. If n channels
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and k (channel, seed) pairs are used, a cycle contains kn+1 slots. Nodes running SSCH exchange their channel

hopping schedules with each other every cycle. A node may also change its schedule to its intended receiver’s

to increase transmission probability. The dwelling time for each hop is set to 10 ms. Within this period, IEEE

802.11 DCF is adopted as the MAC mechanism. Fig. 1 is an example of SSCH operation where each node uses

two (channel, seed) pairs and three channels. Initially, node A has the values of (1,1) and (1,2) for the first and

the second (channel, seed) pairs, respectively. A cycle of node A’s channel hopping sequence is thus given by

1-1-2-0-0-2-1. Following the same mechanism, a cycle of node B’s channel hopping sequence is 1-2-2-1-0-0-1.

Nodes A and B meet each other at time slots 0, 2, 4, and 6 every cycle.

SSCH avoids the control channel bottleneck by sharing the control overhead among all channels. It is a clever

move for multi-channel MAC protocol design. However, maintaining each node’s schedule correctly is also an

overhead, especially in a high mobility environment. Moreover, allowing a node changing its schedule may

produce the missing receiver problem since the intended receiver’s schedule may also change.

III. PROPOSED MULTI-CHANNEL MAC PROTOCOL

In this section, we describe our CQM in detail. The CQM is a channel hopping MAC protocol. Nodes running

our protocol can choose their channel hopping sequences individually, without signaling through any dedicated

control channel or common control period. The same four-way handshake of IEEE 802.11 DCF is adopted which

enables nodes running CQM coexist with those running the 802.11 standard. The CQM utilizes the cyclic quorum

systems to accomplish channel allocation and to solve the missing receiver problem.

A. Quorum Concept

Quorum systems have been widely used for mutual exclusion in distributed systems [21] and for MAC protocol

design in wireless networks [8], [9], [10], [16]. A quorum system can be defined as follows [16].

Definition 1. Given an universal set U = {0, ..., n−1}, a quorum system Q under U is a collection of non-empty

subsets of U , each called a quorum, which satisfies the intersection property:

∀G,H ∈ Q : G ∩H ̸= ∅.

For example, Q = {{1, 2},{1, 3},{2, 3}} is a quorum system under U = {0, 1, 2, 3}. There are many quorum

systems, such as the cyclic quorum system, the grid quorum system, and the torus quorum system. We use the
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cyclic quorum system to develop our multi-channel MAC solution since it can provide equal opportunity for a

node to transmit and to receive packets, as will be described in Section III-B. To facilitate our description, the

following descriptions are needed.

Definition 2. Given a non-negative integer i and a quorum H in a quorum system Q under U = {0, ..., n− 1},

we define rotate(H, i) = {j + i (mod n)|j ∈ H}.

Definition 3. A quorum system Q under U = {0, ..., n− 1} is said to have the rotation closure property if

∀G,H ∈ Q, i ∈ {0, ..., n− 1} : G ∩ rotate(H, i) ̸= ∅.

For instance, the quorum system Q = {{0, 1, 2},{0, 1, 3},{1, 2, 3}} under {0, 1, 2, 3} has the rotation closure

property, while the quorum system Q′ = {{0, 1},{0, 2},{0, 3},{1, 2, 3}} under {0, 1, 2, 3} does not possess the

rotation closure property because {0, 1} ∩ rotate({0, 3}, 3) = ∅.

A cyclic quorum system is constructed from a difference set. The definitions of difference set and cyclic

quorum system are as follows.

Definition 4. A subset D = {d1, ..., dk} of Zn is called a difference set under Zn if for every e ̸= 0 (mod n)

there exist at least two different elements di and dj ∈ D such that di − dj = e (mod n).

Definition 5. Given any difference set D = {d1, ..., dk} under Zn, the cyclic quorum system defined by D is

Q = {G0, ..., Gn−1}, where Gi = {d1 + i, ..., dk + i} (mod n), i = 0, ..., n− 1.

For instance, D = {0, 1, 3} is a difference set under Z6
1. The set Q = {G0, G1, ..., G5}, where G0 = D,

G1 = {1, 2, 4}, G2 = {2, 3, 5}, G3 = {3, 4, 0}, G4 = {4, 5, 1}, and G5 = {5, 0, 2}, is a cyclic quorum system

under Z6. And Gi, i = 0, ..., 5, is a cyclic quorum.

Theorem 1. The cyclic quorum system satisfies the rotation closure property.

1Here we verify that D is a difference set: e = {1, 2, 3, 4, 5}, we have 1 ≡ 1− 0 (mod 6), 2 ≡ 3− 1 (mod 6), 3 ≡ 3− 0 (mod 6),
4 ≡ 1− 3 (mod 6), 5 ≡ 0− 1 (mod 6).
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Proof: The cyclic quorum system has the intersection property since it is a quorum system itself. By

definition, for any quorum G belongs to a cyclic quorum system Q, rotate(G, i) is also a quorum in Q for any

i. With the intersection property, the cyclic quorum has the rotation closure property.

We also list a cyclic quorum system under Z8 here: Q′ = {{0, 1, 2, 4},{1, 2, 3, 5},{2, 3, 4, 6},{3, 4, 5, 7},{4,

5, 6, 0},{5, 6, 7, 1},{6, 7, 0, 2},{7, 0, 1, 3}}. The minimal difference set under Zn for n = 4 to 111 can be

found in [21].

B. The CQM Protocol

Now we are ready to present our CQM. First we list the assumptions of our protocol below:

• Totally m channels are available and all of them have the same bandwidth.

• Each node is equipped with one half-duplex transceiver which is able to switch to any channel dynamically.

• Nodes are time synchronized. Clock synchronization can be achieved by schemes such as [26], [28] or by

using GPS devices.

• Each node knows the identifications (IDs) of its one hop neighbors.

To enable a communication, a transmission pair must tune to the same channel at the same time. When they

meet each other, the four-way handshake can be applied to fulfill data transfer. In essence, the most critical task

is the joint allocation of channel/time for all the nodes in the network. In CQM, time is divided into a series

of cycles. Each cycle consists of n time slots, numbered from 0 to n− 1. The value of n is determined by the

integer set from which the adopted difference set is derived. For example, if a difference set of Z6 is adopted, the

value of n is six. The length of a time slot is long enough to transmit at least one data packet. For each cycle,

time slots are partitioned into default slots and switching slots. At default slots, a node will stay on its default

channel, waiting for transmission requests. At switching slots, a node may switch to its intended receiver’s default

channel. Each node’s default channel is selected from its node ID. To solve the missing receiver problem, what

we need to do is providing a rendezvous between a sender and its intended receiver. To achieve this goal, we

use a cyclic quorum Gi under Zn to identify a node’s default slots. Specifically, for any node i ∈ V , where V

is the set of nodes in the network, node i’s default channel (denoted as DCi) and default slots (denoted as DSi)

are chosen as follows.

DCi = node IDi (mod m),

DSi = Gj , j=node IDi (mod n), ∀i ∈ V .
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Fig. 2. An example of CQM operation under Z6 with 3 channels. The number in each slot represents the channel to be switched to.

where node IDi is the ID of node i.

The effectiveness of the CQM protocol relies on the overlapping of the sender’s switching slots and the

receiver’s default slots. The intersection property of the cyclic quorum system is not enough for CQM since it

only guarantees the overlapping of default slots. In the following, we justify the correctness of our CQM.

Definition 6. For a given difference set D = {d1, ..., dk} under Zn, the complement set of D, D, is defined as

Zn −D. That is, D = {b1, ..., bm}, where k +m = n, for i = 1, ..., k, j = 1, ...,m, di ̸= bj .

For example, D = {0, 1, 3} is a difference set under Z6 with complement set D = {2, 4, 5}.

Theorem 2. Given a cyclic quorum system Q = {G0, ..., Gn−1} under Zn, for i, j = 0, ..., n-1, then Gi∩Gj ̸= ∅

if and only if Gi ̸= Gj .

Proof: In the forward direction, we prove it by contraposition. If Gi = Gj , Gi ∩ Gj = ∅. This proves the

forward direction.

In the backward direction, we also prove it by contraposition. If Gi ∩ Gj = ∅, according to definition 5,

Gi = Gj . This proves the backward direction.

Theorem 2 verifies the feasibility of CQM. It is guaranteed that a sender’s switching slots and its receiver’s

default slots intersect. The missing receiver problem is solved accordingly. In addition to solving the multi-channel

MAC problems in a totally distributed way, our CQM solves them efficiently. We justify this by analyzing the

performance of our CQM and another channel hopping MAC protocol, SSCH, in Section IV.

The design of CQM achieves multi-rendezvous in that, at any time slot, multiple transmission pairs can

concurrently complete handshaking at the receivers’ default channels. This joint channel/time allocation has

some more beneficial features. First, given that the node IDs are randomly distributed, the default channels for
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all the nodes in the network can also be evenly distributed among all available channels. It means that the traffic

load can be evenly shared by all available channels. Second, the scattered overlapping of default and switching

slots for different pairs help to reduce packet collisions. Third, it is easy to retrieve a neighbor’s channel hopping

sequence if the neighbor’s ID is available. This greatly reduces the control overhead, such as exchanging each

node’s hopping sequence or available channel list.

Fig. 2 is an example of CQM operation under Z6 with 3 channels (numbered from 0 to 2). Nodes A and

B, with IDs 0 and 1, respectively, are within each other’s transmission range. Each node’s default channel and

default slots are shown in Fig. 2, supposing that we choose the difference set {0, 1, 3} under Z6 as G0. The

marked time slots are default slots. The number in each slot is the channel that should be switched to. When

node A has packets pending for node B, node A switches to node B’s default channel (channel 1) at its switching

slots. In this example, node A can send some packets to B at time slots 2 and 4 of each cycle. Similarly, if node

B has packets to A, the transmission can be done in time slots 0 and 3 by switching B’s transceiver to channel

0.

It should be noted that two nodes with the same cyclic quorum have no overlapping of default and switching

slots. They may never meet each other if their default channels are different. In a network where the nodes’ IDs

are uniformly distributed, two nodes may not be able to communicate with each other with a probability of m−1
mn .

For example, with m=3 and n=6, one out of nine neighbors will be unreachable for each node. Although the

probability is not high, the unreachable problem still needs to be solved. This problem can be solved by finding

a multi-hop route to relay their traffic, if we handle it in the network layer. This means route discovery between

these two nodes must be applied. If this route discovery fails, the node that has pending traffic to the other can

temporarily change its quorum until the traffic is delivered. If both nodes have pending traffic to the other, it is

possible that they change to the same quorum again. To solve this, one of the nodes, say the one with a larger

ID, can change its quorum for the second time. There is a rare situation where a node is isolated because of

having a common cyclic quorum but different channel with all its neighbors. In such a case, the isolated node

can randomly choose another quorum and announces this change to its neighbors.

C. CQM Variations

Providing broadcast is not easy for channel hopping protocols. A typical solution is to transmit the packet on

each channel separately [7]. This may produce longer delay and higher traffic contention. Besides this traditional
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strategy, a possible way for our CQM to support fast broadcast is to arrange a broadcast slot periodically. For

instance, a broadcast slot can be allocated once per second (which is equivalent to allocate a broadcast slot every

17 cycles for a cyclic quorum under Z6). The frequency of broadcast slot depends on the ratio of broadcast traffic

and should be identical for all nodes in the same network.

To support a large amount of traffic transfer between two nodes, e.g., file transfer and streaming services, the

sender can temporarily change to the receiver’s channel hopping sequence after their first communication slot.

Supposing that node A has a large file to node B, both nodes follow their original channel hopping sequences

until they communicate with each other at some time slot. For the ensuing slots, node A can follow node B’s

schedule until the transmission is complete. To go one step further, the receiver can change all its switching slots

to default slots to enable 100% meeting probability with the sender.

IV. PERFORMANCE ANALYSIS

In this section, we compare the channel hopping scheme of CQM with that of the SSCH. Since changing a

node’s channel hopping sequence is possible for both protocols, for simplicity’s sake, we compare the performance

when nodes do not change their channel hopping sequences. The comparison with a complete SSCH where a

node’s schedule may change to its receiver’s will be presented in Section V. We consider an environment with only

two nodes (A and B) and both nodes have data packets for each other. For SSCH, the overhead of broadcasting

each node’s schedule is ignored.

Two criteria are used in this comparison:

• The expected ratio of meeting slots in a cycle, denoted as R(m).

• The expected number of slots a node has to wait before encountering a meeting slot, denoted as E(w).

For example, for each cycle in Fig. 2, the default slots of node A and the switching slots of node B overlap
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at time slots 0 and 3. On the contrary, the default slots of node B and the switching slots of node A overlap at

time slots 2 and 4. The ratio of meeting slots between nodes A and B in a cycle is (2+2)/6=0.667. If node A

has a packet for B, it can be transmitted at time slot 2 or 4. That is, if the packet arrives at time slot 2 or 4, it

can be delivered immediately. If the packet arrives at time slot 0, 1, or 3, the number of time slots to be waited

is 2, 1, or 1, respectively. If the packet arrives at time slot 5, three time slots must be waited before it can be

sent at time slot 2 of the next cycle. The expected value of waiting time slots is 2+1+0+1+0+3/6=1.167.

A. Analysis of SSCH

A node running SSCH determines its channel schedule by a (channel, seed) pair. Nodes may use multiple pairs

to construct their channel hopping sequences. Each node selects its (channel, seed) pairs independently. For each

pair, there are four combinations between the schedules of nodes A and B:

• Case 1: They use identical channel and seed.

• Case 2: They use identical channel but different seeds.

• Case 3: They use different channels but identical seed.

• Case 4: They use different channels and seeds.

Fig. 3 is a snapshot of SSCH hopping schedules using three channels and two (channel, seed) pairs. We first

concentrate on the first pair as shown in Fig. 3(a). It can be seen that nodes A and B do not meet each other often

except for case 1 which has four meeting slots, including three non-parity time slots and one parity slot. For

cases 2 and 4, there is one meeting non-parity slot. In case 2, two nodes meet each other at the first non-parity

slot. In case 4, they meet at one of the non-parity slots except the first one. Nodes A and B meet each other

only at the parity slot in case 3.

When each node has two (channel, seed) pairs, there are 4 × 4 = 16 possible case combinations between A

and B. Fig. 3(b) is an example that the relation between the schedules of nodes A and B is case 3 for the first

pair and is case 1 for the second pair. The number of meeting slots and the number of slots to be waited, as well

as R(m) and E(w), for two pairs with three and five channels are listed in Table II. From this table, it is obvious

that using fewer number of channels has higher R(m) and lower E(w).

We have also developed the general form of R(m) for two nodes using n channels and k pairs. The first pair is

calculated individually because the parity slot is associated with it. The number of meeting slots of the first pair

(including the parity slot) is n+1 for case 1 and is one for the other three cases. For the other pairs, the number
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of meeting slots for cases 1, 2, 3, and 4 is n, 1, 0, and 1, respectively. Denote the probability of two nodes fall

in case i as pi, for i = 1 to 4, we have p1 = 1
n · 1

n−1 , p2 = 1
n · n−2

n−1 , p3 = n−1
n · 1

n−1 , and p4 = n−1
n · n−2

n−1 . The

general form of R(m) with n channels and k pairs is as follows.

R(m) =
1

kn+ 1
((n+ 1) · p1 + 1 · p2 + 1 · p3 + 1 · p4

+

k−1∑
i=1

(n · p1 + 1 · p2 + 0 · p3 + 1 · p4))

=p1 +
k

kn+ 1
p2 +

1

kn+ 1
p3 +

k

kn+ 1
p4 (1)

Special cares need to be taken for case 4 when calculating E(w). The position of the meeting non-parity slot in

case 4 may be different for different pairs of nodes. This implies different numbers of waiting slots accordingly.

For example, the meeting slot for three channels and two pairs can be located at the second or the last non-parity

slot. Thus, two values of the number of waiting slots can be obtained when there is one case 4 in the case

combination. If the case combination is case 4 + case 4, four values of the number of waiting slots can be

obtained. When using five channels and three pairs, the meeting slot of case 4 for each pair can be either of the

four non-parity slots (that is, the second, the third, the fourth, or the last non-parity slot). An element of case 4 in

a case combination implies four numbers of waiting slots. There are totally 43 possibilities if case 4 is the only

element of the case combination (case 4 + case 4 + case 4). In general, if n channels and k pairs are utilized,

there are (n − 1)k possibilities if case 4 is the only element of the case combination. Moreover, if k pairs are

utilized, there are totally 4k case combinations. Since it is not easy to obtain a concise general form for E(w),

we observe the impact on number of pairs by using some particular scenarios. The results using two to four

pairs with three and five channels are shown in Table III. The values for R(m) are also provided for reference

purposes. We see that a little negative effect is observed when the number of pairs is increased.

B. Analysis of CQM

Two nodes running CQM meet each other if one’s default slots overlap the other’s switching slots, and vice

versa. Here we calculate the number of meeting slots and waiting slots of CQM under Z6 and Z8. We consider

the cyclic quorum systems of G0 = {0, 1, 3} under Z6 and G0 = {0, 1, 2, 4} under Z8. We fix on the cyclic

quorum G0 and compute the overlapping and waiting slots with the other cyclic quorums. In CQM, the number

of channels is irrelevant to R(m) and E(m). The complete results are shown in Table IV2.

2We have tested different G0 under Z6 and Z8, as well as fixing on Gi other than G0 and the same results are obtained.
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TABLE II
PERFORMANCE OF SSCH WITH 3 OR 5 CHANNELS AND 2 PAIRS.

3 Channels, 2 Pairs 5 Channels, 2 Pairs

Case Combinations Meeting Waiting Meeting Waiting
(Pair 1 + Pair 2) Slots Slots Slots Slots

1 + 1 7 0 11 0
1 + 2 5 2 7 4
1 + 3 4 3 6 5
1 + 4 5 2 7 4
2 + 1 4 3 6 5
2 + 2 2 15 2 45
2 + 3 1 21 1 55
2 + 4 2 10 2 30
3 + 1 4 3 6 5
3 + 2 2 11 2 37
3 + 3 1 21 1 55
3 + 4 2 12 2 32
4 + 1 4 4 6 6
4 + 2 2 12 2 32
4 + 3 1 21 1 55
4 + 4 2 13.5 2 35.75

Results R(m)=0.36 E(w)=1.67 R(m)=0.20 E(w)=3.21

R(m) and E(w) are the expected values of all combinations.

TABLE III
PERFORMANCE OF SSCH WITH 3 OR 5 CHANNELS AND 2 TO 4 PAIRS.

Number of Pairs Number of Channels R(m) E(w)

2 3 0.3571 1.6746
5 0.2046 3.2118

3 3 0.3500 1.8477
5 0.2031 3.5934

4 3 0.3461 1.9160
5 0.2024 3.7817

TABLE IV
PERFORMANCE OF CQM UNDER Z6 AND Z8 .

Z6 Z8

Quroum Meeting Waiting Meeting Waiting
Combinations Slots Slots Slots Slots

G0 + G1 4 7 4 16
G0 + G2 4 6 4 13
G0 + G3 2 15 6 8
G0 + G4 4 10 4 21
G0 + G5 4 6 6 15
G0 + G6 4 21
G0 + G7 4 12

Results R(m)=0.6 E(w)=1.25 R(m)=0.57 E(w)=1.89
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From Table IV, we see the ratios of meeting slots to a cycle is 0.6 and 0.57 under Z6 and Z8, respectively.

The expected numbers of waiting slots are 1.25 and 1.89, respectively. We conclude that our CQM performs

better under Z6 and is superior to the SSCH protocol.

V. PERFORMANCE EVALUATION

A. Simulation

We have tried to implement our protocol using the well-known ns-2 simulator. Most existing multi-channel

protocols implemented by ns-2 use multiple transceivers. Some provide source codes (Hyacinth [2] and TeNS

[3]). We do not find any available single-transceiver multi-channel ns-2 module. Since no existing module can

be utilized, we try to develop our own single-transceiver module to access multiple channels. Unfortunately, we

failed to do so. We have tried to revise the Hyacinth module to support our CQM. Although working very hard

for over one year, we still do not create a proper single-transceiver multi-channel module for ns-2. The problem

we can’t solve is that we failed to implement our channel hopping mechanism using one transceiver. We have

also tried to implement our CQM based on another ns-2 extension, CRCN [1], which is designed for cognitive

radio networks. It is claimed that single-transceiver channel hopping is supported in this extension; however,

after carefully tracing the source codes, we do not find how channel hopping is achieved and do not succeed to

modify it. Unable to use existing simulator, we have implemented a simulator3 to evaluate the performance of

the proposed CQM protocol. The SSCH and McMAC protocols were also implemented for comparison purposes.

We have tried to implement the mechanisms of SSCH and McMAC as faithful as possible. For SSCH, methods

such as the dynamically schedule switching, per-neighbor FIFO queues, receiving slots, once-per-slot schedule

broadcasting for each node, etc. have been implemented. Whenever a sender wants to change its own schedule,

one non-receiving slot is changed to the receiver’s schedule. If all slots are receiving slots, any slot can be

changed. In our implementation, if multiple slots are allowed to be changed, we always select the next available

slot. For McMAC, mechanisms including the linear congruential generator, the dynamically schedule switching

(with probability Pdeviate), per-neighbor FIFO queues, etc. have been implemented.

In our simulations, nodes are uniformly placed in an area of 800 m × 800 m. Each node may act as a sender

where the destination is chosen from its one-hop neighbors. The number of packets for each transmission is

500. The packet size is set to 512 bytes and nodes are supplied with constant bit rate traffic of 20,000 packets

3The source code is available at http://140.121.198.19/hsccl/cqm/cqm.rar
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Fig. 4. Impact on number of channels

per second. This means the traffic load is about 80 Mbps. A node keeps a separate FIFO queue for each of its

neighbors. The transmission range of a node is 250 meter. A time slot duration is 10 ms long. The capacity for

each channel is 11 Mbps. The number of channels is set to 3, 5, 7, 11, or 13 in all three protocols. The channel

switching delay is 80 µs. For CQM, a cyclic quorum system under Z6 is implemented. The number of (channel,

seed) pairs in SSCH is between 2 and 4, and the initial values of all pairs are randomly chosen. For McMAC, the

default discovery channel is set to channel 0. The probability of temporary deviation, Pdeviate, is varied from 0.2

to 0.8 (identical to the setting in [29]) and only the one that has the best performance is shown in the following

fiugers. The notation SSCH(n) means n (channel, seed) pairs are utilized in the SSCH protocol while McMAC(p)

means Pdeviate is set to p in McMAC. The metric used in our simulation is Aggregate Throughput. Each point

in the figures, if not specified, is an average of 20 simulation runs with each simulating 50 seconds.

Below, we made observations from six aspects.

A) Impact on Number of Channels: First of all, we varied the number of channels being used in different

protocols to observe the effect. Totally 100 nodes were deployed. The results on aggregate throughput are shown

in Fig. 4. It is obvious that CQM performs the best which is followed by McMAC and SSCH. We believe the

throughput enhancement of CQM results from eliminating the missing receiver problem. When a node A running

SSCH changes its channel hopping sequence, the other nodes do not aware of such a change until they receive

the new channel schedule. Because the channel schedule information is not guaranteed to be received by all the

neighbors, the missing problem occurs and produces significant performance degradation. McMAC performs better

than SSCH since nodes running McMAC retain some of their original channel hopping sequences if Pdeviate ̸= 1.

With such a mechanism, although nodes running McMAC suffer from the missing receiver problem, it is not as
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Fig. 5. Impact on number of nodes

severe as what is encountered for nodes running SSCH. Note that the exact slots for nodes running McMAC

follow their original schedule are not available for their neighbors, which means nodes cannot precisely estimate

the channels their neighbors are resided in. In CQM, each node’s default channel and default slots are deterministic

and is known by its neighbors. That is, the rendezvous between two nodes can be correctly specified. The results

verify the superiority of such a design. As the number of channels increases, the packet collision probability is

reduced since nodes are distributed among more channels. Therefore, increased throughput is expected as more

channels are utilized.

B) Impact on Number of Nodes: In this experiment, we varied the number of nodes from 60 to 1000 to examine

the influence. We have tested 3 and 13 channels to simulate networks with a small and a large number of available

channels, respectively. In SSCH, four (channel, seed) pairs are utilized. The results are shown in Fig. 5. As the

number of nodes increases, the number of transmission pairs increases. Although the collision probability also

increases, its impact is much less than that of increased transmission pair and thus all the protocols achieve

higher throughput. Again, successfully solving the missing receiver problem, CQM significantly outperforms the

others and the gaps between CQM and the other two protocols become larger when more nodes are deployed in

the network.

C) Impact on Transmission Range: We have also changed each node’s transmission range to observe the effect

on different spatial reuse characteristics. We have deployed 100 nodes and tested three different transmission

ranges: 150 m, 250 m, and 350 m, which build a 7-hop, 5-hop, and 3-hop network, respectively. As shown in

Fig. 6, the throughput enhancement of CQM over McMAC and SSCH is obvious. A larger transmission range
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Fig. 7. Impact on clock drift

results in limited spatial reuse, which lowers the aggregate throughput.

D) Impact on Clock Drift: Similar to SSCH and McMAC, synchronization among nodes is needed in CQM. In

this experiment, we observe the effect of imperfect synchronization. We have adopted the same two-node topology

as in [7]. Clock skew is introduced such that the sender’s clock is always faster than that of the receiver’s by

0 to 1 ms. The throughput between these two nodes running different protocols can be found in Fig. 7. It is

obvious that the throughput achieved by all three protocols is not affected much by clock drifts of less than

200 µs. Existing synchronization protocol is able to keep the clock drift below 200 µs [28]. The performance

degraded a little when clock drift is very high (1 ms). This experiment verify that CQM as well as McMAC and

SSCH are robust under imperfect synchronization. Note that SSCH has achieved the highest performance since

there no missing receiver problem in this experiment and thus the sender can meet the receiver at every slot.

In fact, McMAC(1) and a variation of CQM (enabling the sender to follow the receiver’s schedule) can both

achieve the same high throughput. To provide some more information, we have also showed the performance

of McMAC(0.8) and pure CQM under imperfect synchronization. The sender running McMAC(0.8) is able to

communicate for around 80% of time while the sender running CQM can deliver its traffic in one third of the
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Fig. 8. Aggregate throughput for (a) the whole network and (b) individual nodes of the star topology

total time slots.

E) Impact on Topoogy/Number of Flows: We have also applied three protocols on three different topologies

which generate different number of flows. Remember that, for McMAC, different Pdeviate have different perfor-

mance and only the best one is showed. The first topology is a star-like one: Node 0 located at the center is

the only sender with constant bit rate of 8 Mbps and has the same volume of traffic to any of its six neighbors

nodes with IDs 1, 2, ..., 6. Fig. 8 (a) shows the results of different protocols using 3 and 13 channels. We can

see that SSCH has the highest throughput since the missing receiver problem does not exist in this scenario.

Running McMAC(0.8), node 0 delivered its traffic for 80% of time and thus the achieved throughput is behind

that of SSCH. For CQM, node 0 can only transmit at switching slots. Because switching slots occupy half of

total slots, the throughput achieved by CQM is half of that of SSCH. The throughput for individual nodes using

three channels in the star topology is shown in Fig. 8 (b). We can see that the channel capacity is roughly shared

among nodes 1 to 6 for all the protocols.

In the circle topology, four nodes with IDs 0, 1, 2, and 3 form a circle where each node is only able to

communicate with its adjacent two nodes. Each node i receives data from node i− 1 (mod 4) and transmits data
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Fig. 9. Aggregate throughput for (a) the whole network and (b) individual nodes of the circle topology

to node i + 1 (mod 4). The results for the circle topology using 3 and 13 channels can be found in Fig. 9 (a).

A detailed view of the throughput for different nodes using 3 channel is shown in Fig. 9 (b). Obviously, CQM

performs the best. When running CQM, node 3 achieves the lowest throughput when compared with the other

nodes. It is because only one of node 3’s switching slots overlaps one of node 0’s default slots while the other

nodes have two such overlapping to their receivers. It is a surprise when we found that McMAC performs worse

than SSCH. After carefully examining each node’s schedule changes during the simulation, we found nodes

running SSCH in the circle topology have a very high probability (86%) to form a uniform channel hopping

sequence. This results from each node has only one receiver and the time to learn its schedule is uncertain. We

illustrate a scenario that produces such a uniform schedule here. Nodes learn their receivers’ schedule in the

following sequence: 0, 3, 2, and 1. That is, node 0 learns node 1’s schedule the earliest, node 3 learns node 0’s

new schedule schedule one or more slots latter, etc. When node 1 finally learns node 2’s schedule, it will find that

the schedule is the same as its own – all the nodes adopt the same schedule after node 2 changing its schedule.

Having the uniform schedule, in each slot, two out of four nodes running SSCH may communicate with each

other (the other two will keep silent because of the IEEE 802.11 CSMA/CA mechanism). For McMAC, poor
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Fig. 10. Aggregate throughput for (a) the whole network and (b) individual nodes of the single-bottleneck topology

performance is observed since nodes suffer from severe missing receiver problem.

In the single-bottleneck topology, Node 0 located at the center receives data from four nodes with IDs 1 to 4

on the left and transmits to the other four neighbors with IDs 5 to 8 on the right. The results for this topology

using 3 and 13 channels are shown in Fig. 10 (a). A detailed view of the throughput for different nodes using 3

channel is also presented in Fig. 10 (b). Note that in Fig. 10 (b), for comparison purposes, the throughput for

node 0 is represented in terms of the source nodes 1 to 4 that generate traffic to node 0. In this topology, the

three protocols do not differ much in achieved performance while CQM still outperforms the others. Because of

the missing receiver problem, SSCH and McMAC favor the traffic flows from node 0 to nodes 5 to 8. On the

contrary, CQM provides much balanced service to all different flows.

F) Impact on Mobility: Next, we investigate the effect of nodes’ movement. We model node mobility by the

Random Waypoint model. 100 nodes are randomly distributed in an area of 1 km × 1 km. Nodes randomly

choose a target and move toward it at a speed of 1 to 20 m/s. When the target point is reached, a node stays for

0 to 10 seconds. We observe the time and overhead required for a node to discovery all its one-hop neighbors’

channel schedules. A total of 3 channels are available for each node. For SSCH, each node broadcasts its channel
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Fig. 11. Neighbor discovery time

schedule once per slot. A node running McMAC broadcasts a beacons once every second and an additional

beacon is sent once on its default discovery channel every two seconds. For CQM, three different broadcast

periods are implemented, that is, a broadcast slot is allocated every 0.1, 0.5, and 1 second. Each point in the

figure is an average of 20 simulation runs with each simulating 600 seconds.

As shown in Fig. 11, nodes running SSCH use the least time to find their neighbors since they broadcast channel

schedules frequently. CQM also has pretty good performance where the time needed to discovery neighbors for

nodes running CQM(0.1) is very close to what is need for nodes running SSCH. It takes much longer time for

nodes running McMAC to identify their neighbors. It is because McMAC has the lowest frequency of schedule

broadcasting. Besides, nodes running McMAC and SSCH do not possess broadcast slots. Some nodes may miss

some of the schedule advertisements, which reduces the effectiveness of channel schedule advertisements. Fig.

12 shows the overhead spent to achieve neighbor discovery for different protocols. As expected, nodes running

SSCH have the highest overhead due to the most frequent schedule exchange. McMAC produces slightly higher

overhead than CQM(1) but lower than CQM(0.5). When consider Fig. 11 and Fig. 12 together, we comment that

all the three protocols can handle node mobility well while CQM achieves it in an efficient way.

B. Real System Implementation

To verify if the simulation results are trustworthy, we have made a real system implementation. We implemented

CQM, McMAC, and SSCH in TinyOS 2.x on Octopus II platform. In our implementation, 10 to 30 nodes were

randomly deployed to form a 4-hop (10 nodes) or a 5-hop (20 and 30 nodes) ad hoc network. Each node may

act as a sender where the destination is chosen from its one-hop neighbors. Since Octopus II uses an IEEE

802.15.4-compatible CC2420 radio chip, the data packet size is set to the maximum of 127 bytes where the
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Fig. 13. Impact on number of nodes in real system implementation

payload size is 114 bytes. Constant bit rate traffic of 100 packets per second is applied. The transmission rate of

CC2420 is 250 kbps which is unchangeable. The number of channels is set to 3 and 13. A time slot is 1 second

long. Each experiment in our implementation ran for 300 seconds while a simple synchronization algorithm (all

nodes synchronized to a fixed node in each channel) was executed in each slot to keep nodes synchronized. In

CQM, we choose the difference set {0, 1, 3} under Z6 as G0. The number of (channel, seed) pairs in SSCH is

set to 4. For McMAC, the parameter Pdeviate is set to 0.8. Similar to our simulator, we have implemented SSCH

and McMAC as faithful as possible.

The results of the impact of number of nodes can be found in Fig. 13. A higher throughput is achieved for

all the protocols when the number of nodes increases. As expected, CQM still performs the best while SSCH

the worst. We also varied the number of channels to observe the effect. The number of nodes is set to 30 in

this implementation. The results are shown in Fig. 14 where CQM achieves the best throughput again. A higher

throughput can be obtained by CQM when more number of channels is available. Note that the throughput for

McMAC and SSCH decreases as the number of channels increases, which is different from our simulations.
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Fig. 14. Impact on number of channels in real system implementation
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Fig. 15. Impact on packet interarrival time in real system implementation

We believe it is because the node density is reduced in the real system implementation. With less nodes, the

throughput enhancement results from increased channels cannot compensate for the throughput degradation due

to the missing receiver problem. Fig. 15 shows the results of different packet interarrival time with 30 nodes in

the network. It is reasonable to find the throughput increases a little when traffic load becomes heavier. These

real system implementation results verify the benefits of using CQM.

VI. CONCLUSIONS

In this paper, we proposed an efficient channel hopping MAC protocol for mobile ad hoc networks. The

proposed CQM protocol is a multi-rendezvous one and requires only one transceiver for each node. Using an

extension of the intersection property of the cyclic quorum systems, the separating of default/switching slots

guarantees a sender running CQM to meet its intended receiver. CQM solves the missing receiver problem and

the signaling overhead is very low since each node’s hopping sequence is determined by its ID. Simulation and

real system implementation results verified the superiority of CQM in that it achieves high throughput in different
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scenarios. We believe that the proposed scheme achieves a great improvement over existing multi-channel MAC

protocols.
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