
1

Load-Aware Channel Hopping Protocol Design for Mobile Ad Hoc Networks

Chih-Min Chao1, Hsien-Chen Tsai, and Chao-Ying Huang
Department of Computer Science and Engineering

National Taiwan Ocean University, Taiwan
1 E-mail: cmchao@ntou.edu.tw, Tel: +886-2-24622192 ext 6651, Fax: +886-2-24623249

Abstract—Using multiple channels in wireless networks im-
proves spatial reuse and reduces collision probability and thus
enhances network throughput. Designing a multi-channel MAC
protocol is challenging because multi-channel-specific issues such
as channel assignment, the multi-channel hidden terminal prob-
lem, and the missing receiver problem, must be solved. Most
existing multi-channel MAC protocols suffer from either higher
hardware cost or poor throughput. Some channel hopping multi-
channel protocols achieve pretty good performance in certain
situations but fail to adjust their channel hopping mechanisms
according to varied traffic loads. In this paper, we propose
a Load-Aware Channel Hopping MAC protocol (LACH) that
solves all the multi-channel-specific problems mentioned above.
LACH enables nodes to dynamically adjust their schedules
based on their traffic loads. In addition to load awareness,
LACH has several other attractive features: (1) Each node is
equipped with a single half-duplex transceiver. (2) Each node’s
initial hopping sequence is generated by its ID. Knowing the
neighbor nodes’ IDs, a node can calculate its neighbors’ initial
channel hopping sequences without control packet exchanges.
(3) Nodes can be evenly distributed among available channels.
Through performance analysis, simulations, and real system
implementation, we verify that LACH is a promising protocol
suitable for a network with time-varied traffic loads.

Keywords: Ad Hoc Networks, Multichannel MAC Protocols,
Quorum Systems.

I. INTRODUCTION

A Mobile Ad Hoc Network (MANET) consists of a collec-
tion of mobile nodes communicating with each other without
the support of base stations. The IEEE 802.11 uses only
a single channel in MAC layer although multiple channels
are supported in physical layer. In a heavy-loaded network,
using multiple channels can increase spatial reuse and network
throughput. Therefore, a single-channel MAC mechanism such
as 802.11 DCF is inefficient in a multi-channel environment
wherein nodes may dynamically switch among available chan-
nels.

Designing a multi-channel MAC protocol for MANETs is
challenging. A good solution should solve the multi-channel
hidden terminal problem, the missing receiver problem, and
the control channel bottleneck problem. The multi-channel
hidden terminal problem exists because the control packets
sent on a particular channel, say channel 1, are unable to

Chih-Min Chao, Hsien-Chen Tsai, and Chao-Ying Huang are with the Na-
tional Taiwan Ocean University, Taiwan, 20224. E-mail: cmchao, m97570007,
10057032@ntou.edu.tw

TABLE I
CLASSIFICATION OF MULTI-CHANNEL MAC PROTOCOLS.

Single-Rendezvous Multi-Rendezvous

Multi-Transceiver [1]–[5] [6]–[12]
Single-Transceiver [13]–[21] [22]–[26], ours

notify neighbors resided on other channels. These neighbors
become potential interference sources if they switch to channel
1 afterwards. The missing receiver problem happens when a
sender fails to deliver packets to its intended receiver because
they do not switch to the same channel. The control channel
bottleneck problem means that a particular control channel (or
time interval) becomes a bottleneck because it is dedicated to
control packet exchanges.

There exist several multi-channel MAC protocols for wire-
less ad hoc networks. We can classify them according to the
following two factors:

• single-/multi-transceiver: Whether a node is equipped
with multiple transceivers or not.

• single-/multi-rendezvous: Whether multiple transmission
pairs can always achieve handshaking simultaneously or
not.

Based on this classification, we categorize existing multi-
channel protocols and the protocol proposed in this paper
in Table I. A more detailed review of these multi-channel
solutions can be found in Section II.

The multi-rendezvous protocols perform better than the
single-rendezvous ones [22]–[25]. However, existing multi-
rendezvous solutions may be suboptimal because they do not
consider each node’s traffic load. In this paper, we proposed
a load-aware channel hopping MAC protocol for MANETs,
denoted as LACH. LACH belongs to the single-transceiver,
multi-rendezvous class. It utilizes the same concept of de-
fault/switching slots where each node waits for receiving
during its default slots [25]. This enables LACH to use a single
transceiver to emulate the solutions in the multi-transceiver,
multi-rendezvous class. LACH utilizes latin squares to evenly
distribute network loads to different channels. A sender
running LACH is guaranteed to meet its intended receiver
within a finite time span. Each node running LACH can also
dynamically adjust the number of default slots based on its
own traffic load.

We have extended our previous work [27] in several aspects:
(1) The LACH default slot adjustment mechanism is enhanced
such that a node’s default slots are determined by all of its



2

senders and intended receivers. (2) An analysis section is
added to investigate the transmission time of LACH. (3) More
simulations are conducted to verify the performance of LACH.
(4) A real system implementation is applied to verify if LACH
works well in real world.

The rest of the paper is organized as follows. We review
some multi-channel MAC protocols in Section II. Our protocol
is presented in Section III. Section IV analyzes the protocols.
Simulation results are given in Section V. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

A number of multi-channel MAC protocols use at least two
transceivers to deal with the channel assignment problem [1]–
[12]. In the multi-transceiver, single-rendezvous protocols [1]–
[5], one transceiver in each node is tuned to a common control
channel to negotiate the channel for later data transmissions.
The other transceivers are used for data transmissions. With
a dedicated control transceiver and a dedicated control chan-
nel, these solutions avoid the multi-channel hidden terminal
problem and the missing receiver problem. However, they
suffer from control channel bottleneck. To avoid such a
bottleneck, some channel allocation solutions avoid using a
common control channel [7]–[12]. In these protocols, each
node uses one of its transceivers to its fixed channel to receive
transmission requests. The other transceivers can be switched
to any channel to initiate a transmission. Another scheme [6]
uses two transceivers; one performs a fast channel hopping and
the other performs a slow channel hopping. The fast and slow
hopping transceiver is used for transmission and reception,
respectively. These protocols belongs to the multi-rendezvous
solutions because handshaking of different transmission pairs
can accomplish simultaneously at the receivers’ fixed chan-
nels. A drawback of these multi-transceiver protocols is the
increased hardware cost.

To reduce hardware cost, many single-transceiver, single-
rendezvous protocols [13]–[21] have also been proposed.
Some of them [14], [16]–[18] employ a dedicated control
channel to exchange control messages. To avoid the multi-
channel hidden terminal problem, a sender usually conserva-
tively waits longer before a transmission. These solutions also
suffer from the control channel bottleneck problem. Similar
to the ATIM window concept in IEEE 802.11 power saving
mode, some other methods [15], [19], [20] utilize a common
control period. During this period, all of the nodes switch to a
common control channel and contend for channel negotiation.
These protocols avoid using a dedicated control channel but
often encounter control channel bottleneck during the common
control period. To enhance channel utilization, some protocols
belonging to the single-transceiver, multi-rendezvous class
use one transceiver to enable multi-rendezvous [22]–[26].
These protocols employ a channel hopping scheme such that
nodes can switch among different channels. Two nodes can
communicate with each other if they switch to the same
channel simultaneously. The core of these protocols is to

design a channel hopping algorithm such that different nodes
can switch to the same channel at the same time. Since
solutions in the single-transceiver, multi-rendezvous class are
desirable, the protocols belonging to this class are reviewed
more detailed in the following.

Bian et al. proposed two kinds of QCH systems [23].
In synchronous QCH systems, time is divided into a series
of frames and m channels are selected as the rendezvous
channels. One distinct rendezvous channel is assigned to m
consecutive frames. A frame consists of k slots and each node
chooses a quorum under Zk. During their quorum slots, nodes
turn their transceivers to the rendezvous channel associated
with the frame; during the other slots, nodes switch to a
randomly selected channel. In asynchronous QCH systems,
nodes select two cyclic quorum systems to generate their
channel hopping sequences. Nodes use one channel for each of
the two quorum systems. Both synchronous and asynchronous
QCH systems guarantee that any two nodes hop to the same
channel at some slot. However, the QCH system is inflexible.
In synchronous QCH, nodes are guaranteed to rendezvous only
in a single channel (the rendezvous channel). In asynchronous
QCH, at most two channels can be utilized simultaneously.

In McMAC [24], a node independently generates its own
channel hopping sequence via a common generator with its ID
as the seed. A sender follows its receiver’s hopping sequence
to send the packets. A sender can easily obtain the hopping
sequence of its intended receiver because nodes use a common
generator. This solution suffers from the missing receiver
problem since the receiver may change its channel hopping
sequence.

EM-MAC is a receiver-initiated multi-channel asyn-
chronous MAC protocol for wireless sensor networks [26].
A node running EM-MAC independently selects its wake-
up time and the wake-up channel according to a pseudo
random function which is known to all of the nodes. At
each wake-up time slot, a node also sends a wake-up beacon
which indicates the unavailable channels (blacklist). A node
is able to predict the wake-up channel and wake-up time
of the intended receiver and thus can wake up at the right
time to initiate a data transmission. EM-MAC also suffers
from the missing receiver problem because a node’s available
channel changes (contained in the wake-up beacon) may not
be correctly received by the other nodes.

A node running SSCH [22] independently generates its own
channel hopping sequence. The channel hopping scheme guar-
antees that two nodes hop to the same channel simultaneously
at least once in a cycle. Each node’s hopping sequence is
determined by a set of (channel, seed) pairs. If there are
m available channels in the network, channel is an integer
between 0 and m − 1 and seed is an integer between 1 and
m − 1. The next channel to be switched to is obtained by
adding channel and seed (mod m). At the end of each cycle,
there is a parity slot to guarantee that two nodes hop to the
same channel concurrently. The channel being used in the
parity is determined by the seed of the first pair. In each cycle,



3

Node B

1 0 10 0

Time slot 0 1 2 3 4 5

0 11 10

0 0 0

11 1

...

Node A

cycle t cycle 1t+

1 2 3 4 5

default slot switching slot

0

1 1

0 0

default channel: 0

default slots: 2,3,5

default channel: 1

default slots: 1,4,5

Fig. 1. An example of CQM operation under Z6 with 3 available channels

nodes running SSCH exchange their hopping sequences with
each other. To increase transmission opportunities, a sender
may change its hopping schedule to its intended receiver’s.

CQM [25] uses the concept of quorum systems and defines
default/switching slots to emulate the multi-transceiver, multi-
rendezvous solutions. In CQM, time is divided into a series
of cycles and each cycle is divided into several time slots.
The time slots in each cycle are partitioned into the default
slots and the switching slots. In default slots, a node stays
on its default channel, waiting for transmission requests. In
switching slots, a node may tune to its intended receiver’s
default channel which is determined by the node ID of the
receiver. To solve the missing receiver problem, a cyclic
quorum is selected to identify a node’s default slots. Fig. 1
is an example of CQM operation for nodes A and B. The
number in each slot represents the channel to be switched
to. If node A has packets pending to node B, in each cycle,
node A can switch to node B’s default channel at slots 1 or 4.
Similarly, node B can switch to channel 0 at slots 2 and 3 to
send packets to node A. CQM uses cyclic quorum systems in a
novel way such that a sender is guaranteed to meet its intended
receiver. CQM also outperforms the other single-transceiver,
multi-rendezvous mechanisms in most situations. However,
the performance of CQM can still be improved because it
does not adapt to traffic changes.

Several single-transceiver, multi-rendezvous MAC protocols
for wireless ad hoc networks are compared in Table II.
The QCH protocol is the only mechanism that has channel
limitation since at most two channels are guaranteed to be
utilized at the same time slot. For the control overhead
issue, EM-MAC and SSCH produce heavy burden since nodes
running EM-MAC or SSCH have to periodically exchange
their blacklists or channel hopping schedules, respectively. In
LACH, nodes also have to broadcast their default/switching
allocation adjustment information; however, the amount and
frequency is less than EM-MAC and SSCH and thus we
classify it as having medium overhead. Most solutions solve
the three problems mentioned in Section I while McMAC,
EM-MAC, and SSCH still have the missing receiver problem.
Lastly, only LACH is a load awareness mechanism which
provides great flexibility when traffic load changes.

TABLE II
COMPARISON OF SINGLE-TRANSCEIVER, MULTI-RENDEZVOUS

PROTOCOLS

Protocols
McMAC EM-MAC SSCH QCH CQM LACH

Channel Limitation N N N Y N N
Control Overhead L H H L L M
Multi-Channel Hidden Terminal N N N N N N
Missing Receiver Y Y Y N N N
Control Channel Bottleneck N N N N N N
Load Awareness N N N N N Y

III. THE PROPOSED LOAD-AWARE CHANNEL HOPPING
PROTOCOL

Similar to CQM, the IEEE 802.11 DCF is adopted as the
medium access scheme. This enables nodes running LACH
coexist with those running IEEE 802.11. A node running
LACH is able to adjust its channel hopping schedule indi-
vidually according to its own traffic load. LACH uses latin
squares to achieve load sharing and multiple rendezvous.
In the following, we first introduce latin squares and then
describe the proposed LACH protocol.

A. Latin Squares

latin squares have been extensively used for wireless
MAC protocol design [28], [29], network coding scheme
design [30], and effective interleaver design of network
communication devices [31]. A latin square is defined as
follows.

Definition 1. A latin square is an n×n matrix containing n
different symbols such that each symbol occurs exactly once
in any column and row.

For example, the square A shown below is a 4×4 latin
square with symbols 1, 2, 3, and 4:

B. The LACH protocol

The assumptions we made in this paper are listed below:
• A total of m equal-bandwidth channels are available in

the network.
• Each node is equipped with a single half-duplex

transceiver which can be dynamically switched to any
channel.

• Each node has a unique ID (the ID of node i is i) and
knows all of its neighbors’ IDs.

• Nodes are time synchronized. Similar to SSCH, McMAC,
and CQM, synchronization among nodes is needed in
LACH. Synchronization is not an easy task in MANETs.



4

Fortunately, there exist several schemes that can handle
the problem [32], [33].

The LACH protocol consists of two major parts: 1) Initial
time/channel allocation and 2) default slot adjustment. A node
running LACH first determines its initial channel hopping
sequence by the initial time/channel allocation mechanism.
Then, using the default slot adjustment mechanism, a node
can change its channel hopping schedule to adapt to its load
changes. That is, the initial time/channel allocation mechanism
is executed once by each node at the network initialization
phase while the default slot adjustment mechanism is executed
periodically afterwards.

C. Initial time/channel allocation

To enable a communication, a transmission pair must switch
to the same channel simultaneously. That is, the most critical
task for a multi-channel MAC protocol is to coordinate the
time/channel usage for all the nodes. To handle this task,
in LACH, time is divided into a series of cycles, each of
which is further divided into n time slots. The value of n
is determined by the size of the latin square being used. For
example, if a 5×5 square is used, the value of n is 5. A node
can assign each slot to be either a default slot or a switching
slot. In a default slot, a node must stay on its default channel,
waiting for transmission requests. In a switching slot, a node
can switch to its intended receiver’s default channel to initiate
a transmission. In a switching slot, no channel switching will
be applied if a node has no pending packets. That is, the
channel being used in that switching slot is the same one
being used in the previous slot. Each node’s default slots are
determined by its ID and an n × n latin square. The LACH
can be implemented based on any latin square. Since IEEE
802.11 standard provides at most 13 channels, Without loss
of generality, we use a 13×13 standardized latin square with
symbols 0 to 12 to illustrate the operation of LACH. We use
a latin square with the first row labelled from 0 to n−1 from
left to right. The second row is one position right-rotated and
the others can be obtained by analogy.

To allocate the default slots and the default channel, each
node i individually selects a row, Ri, and a symbol, SBi, of
the latin square as follows.

Ri = i (mod n),
SBi = (i+ ⌊i/n⌋) (mod n).

Based on these two parameters, each node’s initial default slot,
IDSi, and initial default channel, IDCi, are determined by

IDSi = (SBi +Ri) (mod n),
IDCi = SBi (mod m).

An example of LACH initial default slot/channel allocation
with m = 13 is shown in Fig. 2. Slot 0 and channel 0 are
assigned to node 0 as its initial default slot and initial default
channel, respectively. For node 1, we have IDC1 = 1 and
IDS1 = 1 + 1 = 2. The allocations of some other nodes are
also showed in Fig. 2. If only 13 nodes with consecutive IDs
are in the network, each of them will have a unique initial
default channel and a unique initial default slot. When the

Node 1

2 4 61 3 5

Time slot 0 1 2 3 4 5 7

3 50 2 4

7 9 11 18 10 12 0

8 106 127 9 11 0

6 8 9 10 1211 0 ...

Node 0

cycle t

1

Node 2 011 412 1 3 7 95 116 8 10 12

0

12 1

2

initial default slot switching slot

2 4 63 5

3 50 2 4

7 9 11 18 10 12 0

8 106 127 9 11 0

0

12 1

1Node 13

Node 14

.
.
.

.
.
.

Node 12 01 2 3 4 5 6 7 8 9 10 11 1 212

Node 3 011 412 1 3 7 95 116 810 2 10

Fig. 2. An example for initial default slot/channel assignment of LACH

number of nodes increases, it is inevitable that some nodes
have the same default slot/channel. In such situations, LACH
will distribute nodes’ default channels and default slots as even
as possible. The time/channel allocation mechanism needs
only each node’s ID and the n×n latin square. Once neighbors
are discovered, each node can individually calculate any of its
neighbors’ initial default slot/channel.

The effectiveness of the LACH protocol depends on the
overlapping of the sender’s switching slots and the receiver’s
default slots. If the sender and the receiver do not share the
same initial default slot, LACH guarantees such overlapping.
We justify the correctness of this mechanism by the following
theorem. Let ISSi represents the set of node i’s initial
switching slots. The initial default slot/channel allocation
scheme implies IDSi∪ISSi = Zn and IDSi∩ISSi = ∅.

Theorem 1. Given two nodes i and j running LACH with
an n×n latin square. If IDSi ̸=IDSj then IDSi∈ISSj and
IDSj∈ISSi.

Proof: Assume that IDSi /∈ISSj , which means
IDSi∈IDSj and IDSi∩IDSj ̸=∅. We have IDSi =
IDSj since both IDSi and IDSj have only one element.
This contradicts to the premise IDSi ̸=IDSj and we have
IDSi∈ISSj .
Using the same method, IDSj∈ISSi can also be proved.

The channel/slot allocation scheme of LACH has several
advantages. First, if nodes’ IDs are randomly distributed, all
the nodes’ initial channels are distributed among all available
channels and thus, traffic loads can be evenly shared. Second,
the overlapping default/switching slots for different pairs are
scattered, which reduces the packet collision possibility.

It should be noted that two nodes having the same initial
default slot may not be able to communicate with each other.
This can be solved in the network layer: a common neighbor
node with a different initial default slot can help to relay
their traffic. In such a case, route discovery between the
common node and the two nodes must be applied. If such route
discovery fails, one of the nodes, say the one with smaller ID,
can temporarily change its initial default slot. Without loss of
generality, we assume that any sender and its intended receiver



5

have different initial default slots in this paper to simplify our
description.

D. Default slot adjustment

In LACH, each node has only one default slot initially. To
achieve load awareness, nodes must dynamically adjust the
number of default slots based on their traffic loads. That is,
some extended default slots should be assigned to a node when
its traffic load increases. When handling the extended default
slot allocation, two issues must be addressed: How many and
where should these extended default slots be allocated. To
handle these two issues, our idea is to adjust the number of
default slots according to the utilization of the default and
switching slots. Specifically, the number of default slots is
increased/decreased if the average utilization of the default
slots is higher/lower than that of the switching slots. To avoid
ping-pong effect, we define a threshold T for the utilization
comparison. To facilitate the operation of LACH, each node i
broadcasts its default slot allocation of cycle t+1 during cycle
t at slot IDSi through channel IDCi, in the form of an n-bit
bitmap. A bit in the bitmap is set if the corresponding slot is a
default slot. For example, in Fig. 2, if no extended default slot
is needed for cycle t + 1, node 0 will broadcast its schedule
(1000000000000) at slot 0 of cycle t through channel 0. The
default slot allocation of cycle t+ 1 is obtained at the end of
cycle t− 1 based on the utilization of that cycle. The number
of default slots at cycle t+1, denoted as Nds(t+1), is adjusted
as follows.

Nds(t+ 1) =


min(n−1, Nds(t−1)+⌊Ud−Us

T ⌋)
, if (Ud−Us)>T

max(1, Nds(t−1)−⌊Us−Ud

T ⌋)
, if (Ud−Us)<T

Nds(t− 1) , otherwise.

(1)

where Ud and Us is the average utilization of the default slots
and the switching slots, respectively. The number of default
slots is increased/decreased if the utilization of the default
slots is larger/smaller than that of the switching slots by T .
Otherwise, the number of default slots remains unchanged.
LACH adjusts the number of default slots proportional to the
utilization difference such that a node can adopt a proper
schedule faster. A constraint of the default slot adjustment is
that there must be at least one default slot and one switching
slot in every cycle to enable nodes to send and receive in
each cycle. The threshold T is a system parameter wherein
a smaller value implies a sensitive slot adjustment. The best
setting of T may vary for different scenarios.

When the number of default slots is determined, the next
task is to decide where the extended default slots should be
located. In LACH, a priority scheme is used to select these
additional default slots. The senders of node i for the last few
cycles and the nodes having pending packets in i should be
considered in this priority scheme. Let nodes s and r be one
of such senders and one of the intended receivers of node i,

Node 1

Time slot 0 1 2 3 4 5 06 1 2 3 54 6 ...

Node 0

cycle t

Node 2

0

2

initial default slot switching slotextended default slot

cycle 1t+

1

2 0

1

22

2

2

2

3

4

Node 3

Node 4

3

4

334

2 2 2

4 2 3 2 3

3 3

4 4

Fig. 3. An example for LACH extended default slot allocation

respectively. To select node i’s extended default slots of cycle
t+ 1, the following principles should be followed:

1) The time slot where node r’s initial default slot is
located should be avoided.

2) The time slot where node s’s initial default slot is
located is preferred to be avoided.

3) The time slots where node r’s extended default slots are
located at cycle t is preferred to be avoided.

4) The time slots where node i’s extended default slots are
located at cycle t are preferred to be retained.

These principles are feasible for node i because the initial
default slots for nodes s and r can be obtained through
their IDs. The extended defaults slots of r is also available
because each node broadcasts its schedule of default slots
every cycle. Having precise channel hopping schedules of
node i’s neighbors allows node i to make the best decision.
However, when the precise information is unavailable, these
principles still help for node i to determine its extended default
slots. To realize these principles, the priority of a slot other
than node i’s initial default slot is

• set to −∞ if it is node r’s initial default slot.
• subtracted by two if it is node s’s initial default slot.
• subtracted by two if it is one of the node r’s extended

default slots at cycle t.
• added by one if it is one of node i’s extended default

slots at cycle t.
These priority setting rules are applied for all i’s senders

and intended receivers. If multiple principles are matched for
a slot, all the matched principles will be executed. Slots with
the highest priority values will be selected as extended default
slots while random selection is used to break ties. The channel
being used at the extended default slots is the one indicated by
the corresponding latin square symbol (mod m). For example,
in Fig. 2, if node 1 selects slots 5 and 8 as its extended default
slots, the channels being used will be 4 and 7, respectively.

Fig. 3 is an example of the LACH operation using seven
channels and a 7 × 7 latin square. The number in each slot
stands for the channel a node should be switched to. Assume
that nodes 0 and 1 have pending packets to node 2 which



6

in turn want to transmit to nodes 3 and 4. The schedule
of node 2 for cycle t − 1 is (0000110). Also assume that
node 2 wants to increase two default slots after the utilization
comparison at the end of cycle t − 1. That is, a total of 3
extended default slots will be allocated. After applying the
priority setting rules described above, the priorities of the
seven slots are (−2,−∞,−2,−2,−,−1,−∞) at the end of
cycle t − 1. This means slots 0, 2, and 5 will be chosen as
default slots. To clarify the benefit of LACH, we use an arrow
in the figure to represent a possible communication. We can
see that a proper allocation of extended default slots produces
more communication chances at cycle t + 1 when compared
with cycle t.

Based on the selection principles, a node’s extended default
slots will not overlap with the initial default slots of its
intended receivers and thus, the effectiveness of LACH is
maintained.

Providing broadcast is not easy for channel hopping pro-
tocols. An intuitive solution is to send the packet on each
channel separately [22]. This produces longer delay and higher
traffic contention. A possible way for LACH to support fast
broadcast and to allow new nodes joining the network is to
arrange a broadcast slot periodically. For example, a broadcast
slot can be allocated once per second (which is equivalent to
allocate a broadcast slot every 8 cycles when using a 13 ×
13 latin square). The frequency of broadcast slot depends on
the ratio of broadcast traffic and the amount of new nodes.
This frequency should be identical for all nodes in the same
network.

IV. PERFORMANCE ANALYSIS

In this section, the time needed for CQM and LACH to
deliver a burst of M packets is analyzed. Since we investi-
gate the effect of different channel allocation and scheduling
protocols, factors such as interference, transmission collisions,
and packet loss are excluded in the analysis. We consider an
environment consisting of two nodes A and B while node A
has a burst of traffic to B.

In this analysis, a cyclic quorum system Q =
{G0, G1, G2, G3, G4, G5} generated by the different set D =
{0, 1, 3} under Z6 with G0 = D is used for CQM. Without
loss of generality, when running CQM, nodes A and B
determine their channel hopping sequences with G0 and G1,
respectively. The corresponding schedule for nodes A and B
is 110100 and 011010, respectively. When running LACH, a
6 × 6 latin square is employed. Node A selects row 0 and
symbol 0 as its channel hopping sequence and initial default
slot, respectively. Similarly, node B selects row 1 and symbol
1 as its channel hopping sequence and initial default slot,
respectively. The corresponding schedule for nodes A and B
is 100000 and 001000, respectively.

Let N be the maximum number of packets a node can send
for each rendezvous and R be the number of rendezvous for
two nodes in a cycle. The number of cycles needed for node A

to deliver a burst of M packets when running CQM, denoted
by PCQM (M), is given by

PCQM (M) = ⌈M/N

R
⌉

Let D be the maximum number of default slots in LACH. The
least number of cycles needed for node A to deliver a burst
of M packets when running LACH, denoted by PLACH(M),
is

PLACH(M) =

{
⌈M/N⌉ , if 0 ≤ M ≤ 2N

⌈ (M−2N)/N
D ⌉+ 2 , if M > 2N

Nodes running LACH are load awareness but they take two
cycles to update their schedules. In the first two cycles, nodes
A and B meet once per cycle and therefore a total of 2N
packets can be transmitted. When M is larger than 2N , at least
three cycles are needed to transmit the burst. After the first
two cycles, the number of packets to be delivered is M -2N
and the maximum number of rendezvous per cycle between
nodes A and B is D.

Here we use an example to illustrate the calculation of
PCQM (M) and PLACH(M). Suppose that node A has a burst
of 200 packets to B and one packet can be sent in each
rendezvous (N = 1). Also, nodes A and B meet twice per
cycle (R = 2). In such an environment, PCQM (200) can be
calculated as

PCQM (200) = ⌈200/1
2

⌉ = 100

For LACH, since M is bigger than 2N , nodes A and B
will adjust their schedule at the end of cycle 0. The value
of Nds(2) for nodes A and B is 1 and 5, respectively. This
means that, for cycle 2, the schedule of A remains unchanged
while the schedule of B will be changed to 011111. Therefore,
PLACH(200) can be calculated as

PLACH(200) = ⌈ (200− 2)/1

5
⌉+ 2 = 42

This example shows the advantage of using dynamic schedul-
ing: PLACH(M) is much smaller than PCQM (M).

We have also observe the effect of different values of M and
N . First we observe the impact of varied M . The value of N is
set to four, which is also the value used in our simulations. As
shown in Fig. 4, LACH consistently uses shorter transmission
times in all values of M when compared to CQM. The average
increased transmission time per adding packet for LACH and
CQM is 0.05 and 0.125 cycles, respectively.

We have also investigated the impact of values of N when
the value of M is set to 200. The results can be found in
Fig. 5. A larger N means more packets can be transmitted
in a rendezvous and thus, a shorter transmission time can be
found. Again, nodes running LACH can deliver a burst of
traffic much faster than nodes running CQM. This verifies the
necessity of using a dynamic scheduling scheme.



7

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700

M

LACH CQM

T
ra

n
sm

is
si

o
n

T
im

e 
(c

y
c
le

s)

Fig. 4. Transmission time needed in different values of M

0

10

20

30

40

50

60

2 4 6 8 10

N

LACH CQM

T
ra

n
sm

is
si

o
n

T
im

e 
(c

y
c
le

s)

Fig. 5. Transmission time needed in different values of N

V. PERFORMANCE EVALUATION

A. Simulation Setup

We have implemented a simulator to evaluate the perfor-
mance of the proposed LACH protocol. Three representative
multi-channel MAC protocols: CQM, SSCH, and McMAC,
were also implemented for comparison purposes. For SSCH,
mechanisms such as the dynamically schedule switching, per-
neighbor FIFO queues, receiving slots, once-per-slot schedule
broadcasting for each node, etc. have been implemented.
Whenever a sender wants to change its own schedule, one
non-receiving slot is changed to the receiver’s schedule. If
all slots are receiving slots, any slot can be changed. In our
implementation, if multiple slots are allowed to be changed,
we always select the next available slot. For McMAC, mech-
anisms including the linear congruential generator, the dy-
namically schedule switching (with probability Pdeviate), per-
neighbor FIFO queues, etc. have been implemented. Each
point in the figures is an average of 10 simulation runs
with each simulating 50 seconds. The confidence level shown
in the figures was at 95% with the confidence interval of
(X̄ − 1.96σ/3.16, X̄ + 1.96σ/3.16), where X̄ is the mean

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90

Threshold (%)

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Fig. 6. The impact of threshold

and σ is the standard deviation of the samples.
In the simulations, a total of 100 nodes were uniformly

deployed in an area of 800 m × 800 m. The transmission
range is 250 m if not otherwise specified. Each node may act
as a sender which randomly selects a one-hop neighbor as
its destination. We simulated the bursty traffic model where
each node has a traffic arrival probability uniformly distributed
between 0 and 1 per second. Each burst of traffic consists of
a number of 512-byte packets. The burst length is uniformly
distributed between 200 and 300 packets. The number of
available channels is 3, 5, 7, 11, or 13; each channel has a
bandwidth of 2 Mbps. A time slot is set to 10 ms which means
that the maximum number of packets a node can transmit for
each rendezvous is four. For LACH, a 13 × 13 latin square
was employed. For CQM, a cyclic quorum system under Z6 is
implemented. The number of (channel, seed) pairs in SSCH is
set to 4, and the initial values of all pairs are randomly chosen.
For McMAC, the default discovery channel is set to channel
0. The probability of temporary deviation, Pdeviate, is varied
from 0.2 to 0.8 (identical to the setting in McMAC) and only
the one that has the best performance is shown in the following
figures. The notation SSCH(n) means n (channel, seed) pairs
are utilized in the SSCH protocol while McMAC(p) means
Pdeviate is set to p in McMAC.

B. Simulation Results

We first determine the best value of the threshold T . As
shown in Fig. 6, when T is less than 10%, the aggregate
throughput is high and does not differ much. In fact, the
throughput increases when T is between 1% and 7% and
decreases afterwards. Similar trends can be found when we
varied the number of nodes and the number of channels. Thus,
we set the value of T to be 7% where the highest throughput
was achieved.

In the following, observations are made from five aspects.
1) Impact of Number of Channels:
In this experiment, we varied the number of channels and

the results of aggregate throughput can be found in Fig. 7. As



8

0

5

10

15

20

25

30

3 5 7 11 13

LACH CQM McMAC(0.4) SSCH(4)

Number of Channels

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Fig. 7. Aggregate throughput in different channels

expected, LACH outperforms the other three protocols in all
situations. It is because LACH enables nodes to dynamically
adjust the number of default slots and thus the number of
overlapping slots is increased. In CQM, the flexibility is
limited since the number of overlapping slots in a cycle for a
particular transmission pair is fixed. When a node A running
SSCH changes its channel hopping sequence, the other nodes
do not aware of such changes until they receive node A’s new
channel schedule. The missing receiver problem may occur
and produces significant performance degradation because the
channel schedule information is not guaranteed to be received
by all the neighbors. When using 3 channels, the throughput
of LACH is 32%, 197% and 564% higher than that of CQM,
McMAC, and SSCH, respectively. When using 13 channels,
the throughput of LACH becomes 1.26, 5.64 and 5.87 times
higher than that of CQM, McMAC, and SSCH, respectively.
The average throughput improvement per additional channel
for LACH and CQM is 16.38% and 5.46%, respectively.
LACH and CQM achieve better performance when the number
of channels enlarges because the packet collision probability
is reduced. McMAC performs better than SSCH since nodes
running McMAC retain some of their original channel hopping
sequences if Pdeviate ̸= 1. With such a mechanism, although
nodes running McMAC suffer from the missing receiver
problem, it is not as severe as what is encountered for nodes
running SSCH. Note that nodes cannot precisely estimate the
channels their neighbors are resided in because the exact slots
for nodes running McMAC follow their original schedule are
not available for their neighbors. For LACH and CQM, each
node’s default channel and default slots are deterministic and
is known by its neighbors. This means that the rendezvous
between two nodes can be correctly specified.

2) Impact of Number of Nodes:
We have also varied the number of nodes from 60 to 100

to observe the influence. The results for aggregate throughput
when using 3 or 13 channels are shown in Fig. 8. We can see
that network throughput is getting higher as more nodes are
deployed in the network. However, transmission contention

0

5

10

15

20

25

30

60 70 80 90 100

Number of Nodes

LACH, m=13 LACH, m=3

CQM, m=13 CQM, m=3

McMAC(0.4), m=13 McMAC(0.4), m=3

SSCH(0.4), m=13 SSCH(0.4), m=3

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Fig. 8. Aggregate throughput with different number of nodes

0

5

10

15

20

25

150 250 350

LACH CQM McMAC(0.4) SSCH(4)

Transmission Range (m)

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Fig. 9. Aggregate throughput with different transmission ranges

and packet collision are also increased. In such scenarios,
LACH and CQM have better performance because transmis-
sion pairs are distributed among all channels, which alleviates
the collision problem. When 13 channels are utilized, the
average throughput enhancement per adding node is 233, 106,
36 and 34 kbps for LACH, CQM, McMAC, and SSCH,
respectively. Again, LACH outperforms CQM because the
number of overlapping slots in CQM is fixed. For McMAC
and SSCH, we believe the throughput degradation results from
the serious missing receivers and packet collisions.

3) Impact of Transmission Range:
We have also changed each node’s transmission range to

observe the effect on different spatial reuse characteristics.
We have tested three different transmission ranges: 150 m,
250 m, and 350 m, which builts a 7-hop, 5-hop, and 3-hop
network, respectively. As shown in Fig. 9, the throughput
enhancement of LACH over CQM, SSCH, and McMAC is
obvious. A larger transmission range results in limited spatial
reuse, which lowers the aggregate throughput.

4) Impact of Mobility:
Next, we investigate the effect of nodes’ movement. 100

nodes, followed the Random Waypoint mobility model, were
randomly distributed in a larger area of 1 km × 1 km. Nodes



9

0

0.5

1

1.5

2

2.5

3

1 5 10 15 20

LACH(0.1) LACH(0.5) LACH(1) CQM(0.1)

CQM(0.5) CQM(1) McMAC SSCH(4)

Speed (m/s)

A
v

e
ra

g
e

T
im

e 
to

 D
is

c
o

v
e
ry

 (
s)

Fig. 10. Average discovery time for different mobility speeds

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

3 13

LACH(0.1) LACH(0.5) LACH(1) CQM(0.1)

CQM(0.5) CQM(1) McMAC SSCH

Number of Channels

O
v

e
rh

e
a
d
 (

M
b

p
s)

Fig. 11. Average overhead for different mobility speeds

randomly choose a target and move toward it at a speed
of 1 to 20 m/s. When the target point is reached, a node
stays for 0 to 10 seconds. We observe the time and overhead
required for a node to discovery all its one-hop neighbors’
channel schedules. In this experiment, a total of 3 channels
are available for each node. For SSCH, a node broadcasts
its channel schedule once every slot. A node running Mc-
MAC broadcasts a beacon once per second and an additional
beacon is sent once on its default discovery channel every
two seconds. For LACH and CQM, three different broadcast
periods are implemented, that is, a broadcast slot is allocated
every 0.1, 0.5, and 1 second. We use LACH(p) and CQM(p) to
represent a broadcast slot being allocated every p seconds in
LACH and CQM, respectively. In this experiment, the results
are the average of 20 simulation runs with each of which
simulated 600 seconds.

As shown in Fig. 10, nodes running SSCH use the least
time to find their neighbors’ schedules since they broadcast
channel schedules most frequently. The impact of mobility
is similar for LACH and CQM and both protocols have
pretty good performance. It takes much longer time for nodes
running McMAC to identify their neighbors’ schedules. It is

0

5

10

15

20

25

30

20 40 60 80 100

Simulation times(s)

LACH CQM McMAC(0.4) SSCH(4)

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(M

b
p

s)

Fig. 12. Aggregate throughput with varied traffic loads

because McMAC has the lowest schedule broadcast frequency.
It should be noted that nodes running McMAC and SSCH do
not possess broadcast slots. Some nodes may miss some of
the schedule advertisements, and hence the effectiveness of
channel schedule advertisements is reduced. Fig. 11 shows the
overhead for different protocols. As expected, nodes running
SSCH have the highest overhead due to the most frequent
schedule exchanges. McMAC produces slightly higher over-
head when compared to LACH(1) and CQM(1) but has
lower overhead when compared to LACH(0.5) and CQM(0.5).
Considering Fig. 10 and Fig. 11 together, we comment that all
the four protocols can handle node mobility well while LACH
and CQM achieve it in an efficient way.

5) Impact of varied traffic loads:
In this experiment, we investigated the impact of varied

traffic loads in 100 seconds. The average burst length starts at
250 packets and increases by 100 packets every 20 seconds.
A total of 100 nodes use 13 channels in this experiment.
The results of aggregate throughput can be found in Fig. 12.
LACH obviously outperforms the other three protocols and the
aggregate throughput increases as the traffic load increases.
This confirms the benefits of the dynamic-adjustable channel
hopping mechanism. Without the ability to change channel
hopping sequences according to different traffic loads, the
aggregate throughput of the other three protocols remains
stable as traffic load increases. This experiment verifies that
LACH can maintain high throughput in different traffic loads
when compared with the other protocols.

C. Real System Implementation Setup

We have made a real system implementation to verify if the
simulation results are trustworthy. We implemented LACH,
CQM, McMAC, and SSCH in TinyOS 2.x on Octopus II
platform. In our implementation, 30 nodes were randomly
deployed to form a 5-hop ad hoc network. Any node can be
a sender where the destination is chosen from its one-hop
neighbors. The Octopus II platform uses an IEEE 802.15.4-
compatible CC2420 radio chip, the data packet size is set



10

0

1

2

3

4

5

6

3 13

LACH CQM McMAC(0.8) SSCH(4)

Number of Channels

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

Fig. 13. Impact of number of channels in real system implementation

to the maximum of 127 bytes where the payload size is
114 bytes. Bursty traffic was generated such that the burst
arrival probability for each node in every 100 seconds is
uniformly distributed between 0 and 1. For each arrival,
the burst length is uniformly distributed between 90 and
100 packets. The transmission rate of CC2420 is 250 kbps
which is unchangeable. The number of channels was set to
3 and 13. A time slot was set to 1 second. Each experiment
in our implementation ran for 300 seconds while a simple
synchronization algorithm (all nodes synchronized to a fixed
node in each channel) was executed in each slot to keep nodes
synchronized. In LACH, a 13×13 latin square was employed.
For CQM, we choose the difference set {0, 1, 3} under Z6

as G0. For McMAC, the parameter Pdeviate was set to 0.8.
The number of (channel, seed) pairs in SSCH was set to 4.
Similar to our simulator, we have implemented SSCH and
McMAC as faithful as possible. The results are the average
of 5 experiments.

D. Real System Implementation Results

The impact of number of channels is shown in Fig. 13.
Being able to adjust the number of default slots, nodes
running LACH always have better performance than the
other protocols. It should be noted that the throughput for
McMAC and SSCH decreases when the number of channels
increases, which is different from our simulation results. We
believe it is the consequence of the reduced node density in
the real system implementation. With less number of nodes,
the throughput enhancement results from increased channels
cannot compensate for the throughput degradation due to
the missing receiver problem. On the contrary, without the
missing receiver problem, both LACH and CQM benefit from
increased number of channels. These results have verified the
effectiveness of the proposed LACH in real systems.

The impact of number of nodes can be found in 14. A
higher throughput is achieved for all the protocols when the
number of nodes increases. As expected, LACH still performs
the best while SSCH the worst. Again, due to reduced node

0

1

2

3

4

5

6

10 20 30

Number of Nodes

LACH, m=3 LACH, m=13
CQM, m=3 CQM, m=13
McMAC(0.8), m=3 McMAC(0.8), m=13
SSCH(4), m=3 SSCH(4), m=13

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

Fig. 14. Impact of number of nodes in real system implementation

0

1

2

3

4

5

6

7

3 13

LACH CQM McMAC(0.8) SSCH(4)

Number of Channels

A
g

g
re

g
a
te

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)

Fig. 15. Simulation results of aggregate throughput with different channels
using the same parameter settings as in the real system implementation

density, the throughput for McMAC and SSCH decreases as
the number of channels increases.

To verify if the results of the real system implementation
are trustworthy, a simulation with the same parameter settings
used in the real implementation was also conducted. The
simulation results of aggregate throughput, for a network with
30 nodes, using different channels can be found in Fig. 15.
Compared with Fig. 13, we can see the results of simulations
and real test beds are very close.

VI. CONCLUSIONS

In this paper, we proposed a load-aware channel hop-
ping protocol for mobile ad hoc networks. The proposed
LACH protocol requires only one transceiver to achieve multi-
rendezvous. Utilizing latin squares, different nodes’ initial
default slots are distributed evenly in a cycle if their IDs are
evenly distributed. The schedule selection scheme of LACH
guarantees a sender meets its intended receiver. Nodes can
also dynamically adjust their schedules according to their
own traffic loads. Simulation and real system implementation
results verified that LACH performs better than existing multi-
channel MAC protocol, McMAC and SSCH. We believe that
the proposed LACH achieves significant throughput improve-
ment, especially in a network with unbalanced traffic loads.



11

ACKNOWLEDGEMENTS

This research was sponsored by Ministry of Science and
Technology, R. O. C., under grant NSC 102-2221-E-019-017-
MY3.

REFERENCES

[1] K. H. Almotairi and X. Shen. Multichannel medium access control for
ad hoc wireless networks. 2011.

[2] L. Hongjiang, R. Zhi, G. Chao, and G. Yongcai. A New Multi-channel
MAC Protocol for 802.11-based Wireless Mesh Networks. In IEEE
ICCSEE, pages 27–31, 2012.

[3] Myunghwan Seo, Yonggyu Kim, and Joongsoo Ma. Multi-Channel
MAC Protocol for Multi-Hop Wireless Networks: Handling Multi-
Channel Hidden Node Problem Using Snooping. In Proceedings of
IEEE MILCOM, 2008.

[4] Jianfeng Wang, Yuguang Fang, and Dapeng Wu. A Power-Saving Multi-
radio Multi-channel MAC Protocol for Wireless Local Area Networks.
In Proceedings of IEEE INFOCOM, pages 1-12, April 2006.

[5] Shih-Lin Wu, Yu-Chee Tseng Chih-Yu Lin, and Jang-Ping Sheu. A New
Multi-channel MAC Protocol with On-Demand Channel Assignment for
Multi-Hop Mobile Ad Hoc Networks. In Proceedings of IEEE ISPAN,
pages 232-237, December 2000.

[6] K. H. Almotairi and X. Shen. Fast and Slow Hopping MAC Protocol
for Single-Hop Ad Hoc Wireless Networks. In IEEE ICC, pages 1–5,
2011.

[7] Jun-Ho Kim and Sang-Jo Yoo. TMCMP: TDMA based Multi-channel
MAC Protocol for Improving Channel Efficiency in Wireless Ad Hoc
Networks. In Proceedings of IEEE MICC, pages 429-434, December
2009.

[8] Chi-Yu Li, An-Kai Jeng, and Rong-Hong Jan. A MAC Protocol for
Multi-Channel Multi-Interface Wireless Mesh Network using Hybrid
Channel Assignment Scheme. Journal of Information Science and
Engineering, 23:1041–1055, 2004.

[9] Jaya Shankar Pathmasuntharam, Amitabha Das, and Anil Kumar Gupta.
Primary Channel Assignment based MAC (PCAM) - A Multi-Channel
MAC Protocol for Multi-Hop Wireless Networks. In Proceedings of
IEEE WCNC, pages 1110-1115, 2004.

[10] Zhenxia Zhang, Azzedine Boukerche, and Hussam Ramadan. Design
and evaluation of a fast MAC layer handoff management scheme for
WiFi-based multichannel Vehicular Mesh Networks. Journal of Network
and Computer Applications, 36(3):992–1000, 2013.

[11] Khaled H. Almotairi and Xuemin (Sherman) Shen. A distributed multi-
channel mac protocol for ad hoc wireless networks. IEEE Transactions
on Mobile Computing, 14(1):1–13, 2015.

[12] Ting-Yu Lin, Kun-Ru Wu, and Guang-Chuen Yin. Channel-hopping
scheme and channel-diverse routing in static multi-radio multi-hop
wireless networks. IEEE Transactions on Computers, 64(1):71–86,
2015.

[13] O. D. Incel, L. van Hoesel, P. Jansen, and P. Havinga. MC-LMAC:
A multi-channel MAC protocol for wireless sensor networks. Ad Hoc
Networks, 9:73–94, Jan. 2011.

[14] Stepan Ivanov, Dmitri Botvich, and Sasitharan Balasubramaniam. Coop-
erative Wireless Sensor Environments Supporting Body Area Networks.
IEEE Transactions on Consumer Electronics, 58(2):284–292, May 2012.

[15] Wen-Hwa Liao and Wen-Chin Chung. An Efficient Multi-Channel MAC
Protocol for Mobile Ad Hoc Networks. In Proceedings of IEEE CMC,
pages 162-166, 2009.

[16] Cheng-Shien Lin, Meng-Chun Wueng, Ting-Hung Chiu, and Shyh-
In Hwang. Concurrent Multi-Channel Transmission (CMCT) MAC
Protocol in Wireless Mobile Ad Hoc Networks. In Proceedings of
ICACT, pages 445-449, Feb. 12-14, 2007.

[17] Tie Luo, Mehul Motani, and Vikram Srinivasan. Cooperative Asyn-
chronous Multichannel MAC Design, Analysis, and Implementation.
IEEE TRANSACTION ON MOBILE COMPUTING, MARCH 2009.

[18] Jingpu Shi, Theodoros Salonidis, and Edward W. Knightly. Starvation
Mitigation Through Multi-Channel Coordination. In Proceedings of
ACM MobiHoc, pages 214-225, May 22-25, 2006.

[19] Jungmin So and Nitin Vaidya. Multi-Channel MAC for Ad Hoc
Networks: Handling Multi-Channel Hidden Terminals Using A Single
Transceiver. In Proceedings of ACM MobiHoc, pages 222-233, May
24-26, 2004.

[20] Duc Ngoc Minh Dang, Huong Tra Le, Hyo Sung Kang, Choong Seon
Hong, and Jongwon Choe. Multi-channel mac protocol with directional
antennas in wireless ad hoc networks. In International Conference on
Information Networking (ICOIN), pages 81–86. IEEE, 2015.

[21] Duc Ngoc Minh Dang, Choong Seon Hong, and Sungwon Lee. A hybrid
multi-channel mac protocol for wireless ad hoc networks. Wireless
Networks, 21(2):387–404, 2015.

[22] Paramvir Bahl, Ranveer Chandra, and John Dunagan. SSCH: Slotted
Seeded Channel Hopping for Capacity Improvement in IEEE 802.11
Ad-Hoc Wireless Networks. In Proceedings of ACM MobiCom, pages
216-230, September 2004.

[23] Kaigui Bian, Jung-Min Park, and Ruiliang Chen. A Quorum-based
Framework for Establishing Control Channels In Dynamic Spectrum
Access Networks. In Proceedings of ACM MobiCom, September 20-25,
2009.

[24] Hoi-Sheung Wilson So, Jean Walrand, and Jeonghoon Mo. McMAC:
A Prarllel Rendezvous Multi-Channel MAC Protocol. In Proceedings
of IEEE WCNC, pages 334-339, March 2007.

[25] Chih-Min Chao, Hsien-Chen Tsai, and Kuan-Ju Huang. A New
Channel Hopping MAC Protocol for Mobile Ad Hoc Networks. IEEE
Transactions on Vehicular Technology, 63(9):4464–4475, Nov. 2014.

[26] L. Tang, Y. Sun, O. Gurewitz, and David B. Johnson. EM-MAC:
A Dynamic Multichannel Energy-Efficient MAC Protocol for Wireless
Sensor Networks. In ACM MobiHoc, 2011.

[27] Chih-Min Chao, Hsien-Chen Tsai, and Chao-Ying Huang. Load-aware
channel hopping protocol design for mobile ad hoc networks. In IEEE
ISWPC, pages 1–6, July 2012.

[28] Lichun Bao. MALS: Multiple Access Scheduling Based on Latin
Squares. In Proceedings of IEEE MILCOM, pages 315-321, December
2004.

[29] Ji-Her Ju and Victor O. K. Li. TDMA Scheduling Design of Multihop
Packet Radio Networks Based on Latin Squares. IEEE Journal on
Selected Areas in Communications, 17:1345–1352, August 1999.

[30] Moonseo Park and Seong-Lyun Kim. Minimum Distortion Network
Code Design for Source Coding Over Noisy Channels. In Proceedings
of IEEE PIMRC, pages 1-5, 2008.

[31] Hyun-Young Oh, Dae-Son Kim, Joon-Sung Kim, and Hong-Yeop Song.
Collision-free Interleavers using Latin Squares for Parallel Decoding of
Turbo Codes. In Proceedings of IEEE VTC, pages 1589-1592, 2007.

[32] Jang-Ping Sheu, Chih-Min Chao, Wei-Kai Hu, and Ching-Wen Sun.
A Clock Synchronization Algorithm for Multihop Wireless Ad Hoc
Networks. Wireless Personal Communications, pages 185–200, 2007.

[33] Hoi-Sheung Wilson So, Giang Nguyen, and Jean Walrand. Practical
Synchronization Techniques for Multi-Channel MAC. In Proceedings
of ACM MobiCom, September 23-26, 2006.


